

TRIANGULAR μOS 1.36 SDK

for

Programmers Reference Guide

© 2023

2

Contents:

A. Introduction 3

B. What you need 4

C. How to compile TRIANGULAR μOS 1.36 5

D. Troubleshooting 6

E. BASICALLY 7

F. System Disk Content 10

G. System Registry 11

H. BASIC Variables 13

I. Config file [uos.cfg] 16

J. Support & Legal note 17

K. Changelog 18

3

A. Introduction

Programmer’s Reference Guide for TRIANGULAR μOS 1.36 SDK (Software

Development Kit) explains technical aspects of TRIANGULAR μOS, a GUI (graphic user
interface) operating system for 8-bit Commodore computers.

Goal of creating this system was to develop a GUI for 8-bit Commodore computers with
the lowest amount of memory: that is Commodore PET with at least 4 KB of memory. Next it
was expanded for Commodore VIC-20 with standard 5 KB of memory and later with more
expansion RAM was required. And in subsequent versions μOS was adapted for Commodore 64,
CBM-II and Plus/4. This iteration of TRIANGULAR μOS (version 1.36) is designed to run on
Commodore 128.

This software was written in Commodore BASIC language (subset of Microsoft BASIC)
using CBM prg Studio 4.2.0, and is designed to run on Commodore 128 in its standard

C128 40-column mode. This version of TRIANGULAR μOS is designed to support BASIC 7.0

and works in color text mode. Commodore BASIC (a runtime interpreted language similar in

basic concept to JAVA RTM or C# CLI) is default language used in 8-bit Commodore

computers and also functions as their OS and user interface. In similar fashion to early

Microsoft Windows (1.0 to 3.11), μOS sits atop of BASIC and KERNAL (Commodore’s kernel)
and Commodore DOS, which is implemented in every Commodore disk drives or 3rd party

solutions in order to load μOS programs or modules, load/save settings and documents, perform

operations on floppy disks and communicate with disk drive(s).

Package contains files:

- TRIANGULAR uOS 1.36 for Commodore 128 Programmer’s Reference Guide.pdf –
this document

- Source Code folder with 4 files: UOS.bas (source code of UOS program), GUI.bas (source

code of GUI program), uos.cfg.seq (default configuration file) and TEMPLATE.bas
(source code of TEMPLATE program)

- TRIANGULAR uOS 1.36.d81 – empty, preformatted System Disk
- TRIANGULAR uOS 1.36 Documents.d81 – empty, preformatted Documents Disk
- TRIANGULAR uOS 1.36 TEMPLATE.d81 – disk with TEMPLATE program helping

in starting creating μOS programs

4

B. What you need

In order to change and/or compile TRIANGULAR μOS 1.36 from source code, you need

to do this using external program like CBM prg Studio 4.2.0 (which was used in development
and for compilation of μOS 1.36). Using BASIC 7.0 code on real hardware or emulator is out of
question, since source code uses extensive line concatenation (lines up to 255 bytes long).
Standard BASIC won’t present program lines properly (especially print statements) and its

screen/program editor won’t be able alter those lines properly either.

Download CBM prg Studio here:
www.ajordison.co.uk

For fast creation and modification of disk content DirMaster is recommended. μOS disks
are formatted with custom PETSCII characters in Disk name and Disk ID using DirMaster.

Download DirMaster here:
style64.org/dirmaster

For testing and debugging use e i t her real Commodore 128 or emulator (freeware

VICE emulator was used for testing of μOS).

Download VICE emulator here:
vice-emu.sourceforge.io

Commodore 128 emulator VICE must be configured with enabled disk drive that can

read 800KB 3.5¨ diskette (.d81 file): recommended CBM 1581*. Also, you should enable

joystick. You can easily configure it as Numpad keys:

- Up (8), Down (2), Left (4), Right (6)
- You can move diagonally e.g., Up-Left (7)
- 0 or right Ctrl: Fire (click/select)

 You can also enable the printer in the VICE emulator.
Do this in: Settings -> Peripheral devices -> Printers. You can choose printer as device #4 - #7,
although #4 is standard and is recommended.

* Using 5.25” disk drives: 1571 (default), alternatively 1541 type drive (1541-II) is possible,
but System Disk and Documents disk images first must be converted to .d71 or .d64 file in

external program (e.g., DirMaster). Additionally using 1571 disk drive amounts to over twice disk drive
speed reduction, while 1541 type drive brings speed to default Commodore 64 levels (~10 times slower
than 1581) thus only 1581 type drive is officially supported.

https://www.ajordison.co.uk/
https://style64.org/dirmaster
https://vice-emu.sourceforge.io/

5

C. How to compile TRIANGULAR μOS 1.36

Source code of UOS and GUI programs is stored in the Source code folder in UOS.bas
and GUI.bas files. Segments of programs are commented with simple descriptive caption-like

comments:
!- characters at the beginning of the line are used to mark comments.

After compiling those files in CBM prg Studio, add compiled programs UOS.prg and

GUI.prg to System Disk. File names on disk should always be UOS and GUI (in upper
case/graphic mode) or uos and gui (in lower case mode). Remember to put the UOS file first (to
properly load the system with LOAD “*”,8 or DLOAD”*” commands).

Next add uos.cfg.seq file (it should have SEQ property) and place it in the middle of UOS

and GUI (that’s μOS convention).

You can use empty, preformatted System Disk file to speed up this process:
TRIANGULAR uOS 1.36.d81

For more information about SYSTEM DISK check section F. System Disk Content.

To create new windowed programs to use in TRIANGULAR μOS

use TEMPLATE.bas (in Source code folder) as a starting point and compile it
in CBM prg Studio or simply use TEMPLATE program from TEMPLATE.d81 disk.

TEMPLATE is a simple windowed program with system core embedded that

demonstrates basic principles of functioning of μOS and is a great starting point for the
development of new μOS apps. It addresses system calls through BASICALLY API JUMP
TABLE and is written in a manner that allows easy edit on a real machine or emulator (where
modification of system core still requires CBM prg Studio).

To run your newly created program, add it to any disk and insert this disk into the

computer or attach to the emulator, start μOS and use DISK or CMD program to navigate to it
and start it.

Also feel free to modify and experiment with the TRIANGULAR μOS system core.

6

D. Troubleshooting

Loading of a module of TRIANGULAR μOS can “freeze” in the process of inter-loading
the next μOS module or disk program (a very rare occurrence). This happens when the loading
screen does not proceed to the next module for over 1 minute. When the loading screen is not
responsive for a longer time, it can mean an error in inter-loading procedure, most probably the
keyboard buffer was not filled with keys properly. To see what really happened change the color
of the cursor to blue (press Control + 7) and enter command COLOR 0,2 and hit Return key.
This should change the background color to white which will show the underlying black text of
the loading sequence message. If the computer doesn’t change the cursor or background color
and try again. If still there is no effect it might be a real freeze. Then restart the computer and
start the μOS again.

If the color change procedure succeeds, try using the RUN command to see if the
program will start or go to the top of the screen (Home key) and press Return in order to reload
the program. If it will load successfully enter the RUN command again. If that does not work
check if the load command is correct. It should have format: LOAD “[filename]”, [device # (1 or
8 - 11)] like in e.g.: LOAD “GUI”, 8. If none of it works then start the system anew. To prevent
this kind of freeze, try not to use the keyboard when an inter-loading procedure is performed (it
can slip an improper key into the keyboard buffer, which most often leads to this error).

7

E. BASICALLY

Below are listed functions of BASICALLY API of TRANGULAR μOS 1.36.

System calls of BASICALLY API JUMP TABLE are meant to be permanent
and will work on later μOS versions.

Basic functions of BASICALLY API for TRIANGULAR μOS 1.36

1. LEFT$(S$,X) – will display X number of spaces (max X = 40)

2. LEFT$(V$,X) – will move cursor down X number of times (max X = 24)

3. LEFT$(H$,X) – will move cursor right X number of times (max X = 40)

BASICALLY API JUMP TABLE for TRIANGULAR μOS 1.36

Rudimentary functions

Convert mouse sprite position to window loop objects position:
GOSUB 60000

Mouse pointer steering:
GOSUB 60001

Clear SID registers:
GOSUB 60002

Beep sound:
GOSUB 60003

Save settings to uos.cfg & store variables in memory system:
GOSUB 60100

Retrieve memory variables:
GOSUB 60101

Load program:
GOSUB 60102

8

GUI drawing functions

Update color variables:
GOSUB 61000

1st time VIC-II initialize & sprites off & sprites space clear & sprites shapes:
GOSUB 61001

VIC-II initialize & sprites off & sprites space clear & sprites shapes:
GOSUB 61002

Turn off, reset and move all sprites to bottom-right corner:
GOSUB 61003

Move all sprites to bottom-right corner:
GOSUB 61004

Create mouse pointer:
GOSUB 61100

Full size window area:
GOSUB 61101

Draw load:
GOSUB 61102

Load sequence:
GOSUB 61103

Restart system:
GOSUB 61104

Shut down:
GOSUB 61105

Go back to uOS:
GOSUB 61106

Draw Background & task panel:
GOSUB 61150

Draw DESKTOP icons:
GOSUB 61151

Go to desktop:
GOSUB 61152

9

Go to desktop loop:
GOSUB 61153

Go to Start Menu:
GOSUB 61154

Move window:
GOSUB 61160

Window generator:
GOSUB 61200

Window generator: draws an empty window based on data in variable
arguments. Before evoking this function assign desired values to those
variables:
W1 - window top-left horizontal position
W2 - window top-left vertical position
W3 - length horizontal position
W4 - height bottom-right vertical position
WN$ - window name which will be displayed on title and task bar
WS - window slider (0 – disable / 1 - enable)

Next evoke this function with BASICALLY API system call GOSUB 61200

Caution: variable J is used in FOR=TO:NEXT loops.

10

F. System Disk Content

Name Type Size B Size KB Disk Blocks Size on Disk KB

1 UOS PRG 4,657 4.55 19 4.75

2 UOS.CFG SEQ 39 0.04 1 0.25

3 GUI PRG 41,590 40.62 164 41.00
 TOTAL: 46,286 45.20 184 46.00

11

G. System Registry

Adress [DEC/$] System Registry position Values [DEC] Function

3071 / $0BFF Commodore computer line 0 Unknown
 1 PET 1.0
 2 PET 2.0-4.1
 3 VIC-20
 4 C64
 5 C128: C64 Mode
 6 C128
 7 Plus/4
 8 CBM-II P/500
 9 CBM-II B/600/700
 10 C65
 11 MEGA65

3070 / $0BFE Screen width [SW] Default: 40 Screen width

3069 / $0BFD Memory size [FM] 0-255 Size in KB

3068 / $0BFC Desktop background pattern [bp] <>0 0: Default [223]

3067 / $0BFB Desktop background reverse [BR] 0 Not reversed
 1 Reversed

3066 / $0BFA Title bar color [TC] 0-255 4-bit

3065 / $0BF9 Desktop pattern color [BC] 0-255 4-bit

3064 / $0BF8 Mouse pointer horizontal position [H0] 0-40 Default: [20]

3063 / $0BF7 Mouse pointer vertical position [V0] 0-24 Default: [10]

3062 / $0BF6 GUI Program mode 0 None
 1 DESKTOP
 2 THIS PC
 3 SETTINGS
 4 APPS
 5 GAMES
 6 COLORS
 7 DISK
 8 MATH
 9 CMD
 10 External program

3061 / $0BF5 Printer device # [PP] 0 or 4-7 Default: 0 [None]

3060 / $0BF4 Datasette availability [DD] 0 No
 1 Yes - #1 [Default]

3051-3057 /
Sequence of values in keyboard buffer

for load module
 - -

$0BEB-$0BF0

12

3050 / $0BEA TRIANGULAR μOS version 0-255 136 for version 1.36

3000 / $0BB8 Boot drive # [BD] 8-11 Device #

3001 / $0BB9 Work drive # [WD] 8-11 Device #

3011 / $0BC3 Device #8 detected 0 No
 1 Yes

3012 / $0BC4 Device #9 detected 0 No
 1 Yes

3013 / $0BC5 Device #10 detected 0 No
 1 Yes

3014 / $0BC6 Device #11 detected 0 No
 1 Yes

3015 / $0BC7 Device #8 code 0-255 Ref: Drive codes

3016 / $0BC8 Device #9 code 0-255 Ref: Drive codes

3017 / $0BC9 Device #10 code 0-255 Ref: Drive codes

3018 / $0BCA Device #11 code 0-255 Ref: Drive codes

Keyboard
buffer
table

 Tape buffer:

Keyboard Buffer Buffer size Commodore 128: 2816-3071 / $0B00-$0BFF

Commodore 128 842-851 208 /$00D0

 Drives codes

Drive name Also used by

0 Unknown

7 2031

16 2040

32 3040

169 4040

170 1541 1540

76 1541-II 8050, 8250, SFD-1001 & D9060/D9090

255 1551

173 1571 1570

108 1581

48 SD2IEC * Experimental

13

H. BASIC variables

Variable Type Description Value Memory cell Notes

1 A1 Float 1st memory address Any - Used only in MONITOR

2 A2 Float 2nd memory address Any - Used only in MONITOR

3 AC Float GUI Program mode 0-8 3062 / $0BF6

4 AD Float 2-byte address variable 0-65535 - Used only in MONITOR

5 BC Float Desktop pattern color ASCII code 0-255 3065 / $0BF9

6 BC$ String Desktop pattern color character Any -

7 BD Float Boot drive # 8-11 3000 / $0BB8

8 BP Float Desktop background pattern ASCII code <>0 (0 = Default [223]) 3068 / $0BFC

9 BP$ String Desktop background pattern character Any -

10 BQ$ String 2 char format disk ID Any - Used only in CMD

11 BR Float Desktop background reverse OFF / ON 0 / 1 3067 / $0BFB

12 BR$ String Desktop background reverse character {REVERSE OFF / ON} -

13 BS Float Temporary boot drive # 8-11 3000 / $0BB8 Used only in UOS

14 BW$ String Generated Task Bar string Any -

15 C$ String Command string Any - Used only in CMD

16 C1$ String First temporary string variable Any -

17 C2$ String Second temporary string variable Any -

18 C7 Float Length of [IN$] string Any - Used only in MONITOR

19 CE Float Error flag variable Any - Used only in CMD

20 CL Float Command length Any - Used only in CMD & MONITOR

21 CS$ String Datasette availability display string Any - Used only in CMD

22 D1 Float Disk drive # change variable Any - Used only in CMD

23 D9 Float Database disk drive code Any - Used only in CMD

24 D9$ String Database disk drive string Any - Used only in CMD

25 DC Float 1 byte variable 0-255 - Used only in MONITOR

26 DD Float Datasette availability 0-1 3060 / $0BF4

27 DI Float Disk drive availability Any - Used only in CMD

28 DN Float Disk drive code Any - Used only in CMD

29 DR Float Active drive # 1 / 8-11 -

30 DR$ String Active drive # [DR] string "1" / "8" - "11" -

31 DT$ String Disk drive name Any - Used only in CMD

32 EN$ String Disk drive channel error name Any -

33 ER$ String Disk drive channel error code # Any -

34 ES$ String Disk drive channel error sector Any -

35 ET$ String Disk drive channel error track Any -

36 F$ String Char fetched from disk name Any -

37 FH$ String Disk header name Any -

38 FI Float Number of disk entries Any -

14

39 FI$(X) String array String array of disk content or text lines Any -

40 FL Float Float variable to be trimmed to [SG$] Any - Used only in DISK

41 FM Float BASIC System memory in KB 0-255 3069 / $0BFD

42 FY$ String Disk header ID Any - Used only in DISK

43 G0 Float Start of VIC-II registers Constant 53248 / $D000

44 G1 Float Start of screen memory Any - PEEK(2616)*256

45 GC Float Start of color memory Any - ((PEEK(648)AND3)+148)*256

46 H Float Mouse pointer sprite horizontal position Any 3064 / $0BF8

47 H$ String String cursor right {right*39} - Constant -

48 H0 Float Mouse sprite loop position horizontal 0-40 -

49 H3 Float Window default [H0] position 0-255 -

50 H4 Float Backup H0 before moving window 0-255 -

51 H7 Float Mouse movement [H] max. limit Any - [Default: 338]

52 H8 Float Mouse movement [H] min. limit Any - [Default: 26]

53 HL Float Desired HEX number length Any - Used only in MONITOR

54 HW$ String HEX number string Any - Used only in MONITOR

55 I Float Temporary variable (used e.g., in FOR) Any -

56 IN$ String Command string Any - Used only in MONITOR

57 IP$ String Command prompt Any - Used only in MONITOR

58 J Float Temporary variable (used e.g., in FOR) Any -

59 J0 Float Read Joystick register with JOY command 0-255 -

60 K Float Temporary variable (used e.g., in FOR) Any -

61 K$ String Default key char variable Any -

62 L Float Cut string by L value (RIGHT$ or LET$) Any - Used only in CMD & MONITOR

63 L$(X) String array Loading text and CBM DOS commands Any - Used with subscript 1 or 2 only

64 LN Float Length of string Any - Used only in MATH

65 LN$ String Register number display padding Any - Used only in MATH

66 MO Float Mouse pointer movement increment Any - [Default: 8]

67 MV Float Temporary variable for memory cell Any - Used only in MONITOR

68 N Float Temporary variable with disk code Any -

69 N$ String String variable for file name or temporary Any -

70 NA Float A register Any - Used only in MATH

71 NA$ String A register string Any - Used only in MATH

72 NB Float B register Any - Used only in MATH

73 NB$ String B register string Any - Used only in MATH

74 NC Float Temporary variable for registers Any - Used only in MATH

75 ND Float Dot flag Any - Used only in MATH

76 NL Float Length of trimmed [IN$] string Any - Used only in MONITOR

77 NM Float Variable of MATH clipboard Any -

78 NT$ String MATH register temporary string Any - Used only in MATH

79 NZ Float Temporary variable for registers Any - Used only in MATH

80 OO$ String Color of SETTING label Any -

15

81 OT Float Temporary variable Any - Used only in MONITOR

82 PD Float Disk listing page Any - Used only in DISK

83 PD$ String String of max. disk listing page [PD] Any - Used only in DISK

84 PM Float Max. disk listing pages # Any - Used only in DISK

85 PM$ String String of max. disk listing page [PM] Any - Used only in DISK

86 PP Float Printer device # 0 or 4-7 3061 / $0BF5

87 PS$ String String clearing disk header Constant - Used only in DISK

88 Q$ String Quotation mark CHR$(34) ["] -

89 R Float Return from Start Menu 0-2 -

90 S Float Start of SID sound memory Constant 54272 / $D400

91 S$ String String space {space*39} - Constant -

92 SG$ String Trimmed string from [FL] Any - Used only in DISK

93 SL Float Length of [SG$] string Any - Used only in DISK

94 T Float Temporary variable Any -

95 T$ String Time in TI$ form "000000" - "235959" -

96 T0$ String Temporary string for time changing Any -

97 T1$ String Hours "0" - "23" -

98 T2$ String Minutes "0" - "59" -

99 T3$ String Seconds "0" - "59" -

100 TC Float Title bar color ASCII code 0-255 3066 / $0BFA

101 TC$ String Title bar color character Any -

102 TD Float Processed [TN] Any - Used only in MONITOR

103 TD$ String 1 HEX digit trimmed from string [IN$] Any - Used only in MONITOR

104 TN Float Variable of [TD$] Any - Used only in MONITOR

105 TS$ String Seconds blinking " " / ":" -

106 V Float Mouse pointer sprite vertical position Any 3063 / $0BF7

107 V$ String String cursor down {down*23} - Constant -

108 V0 Float Mouse sprite loop position vertical 0-24 -

109 V3 Float Window default [V0] position 0-255 -

110 V4 Float Backup [V0] before moving window 0-255 -

111 V7 Float Mouse movement [V] max. limit Any - [Default: 244]

112 V8 Float Mouse movement [V] min. limit Any - [Default: 52]

113 VR Float Version number in System Registry 1.36 3050 / $0BEA 136 / 100 for version 1.36

114 VT Float Code version number 1.36 - 1.36 for version 1.36

115 W1 Float Window creator: top-left [H0] position Any -

116 W2 Float Window creator: top-left [V0] position Any -

117 WD Float Work drive # 8-11 3001 / $0BB9

118 WH Float Window creator: window width Any -

119 WN$ String Window creator window name Any -

120 WS Float Window creator: window slider 0 / 1 - [0] Disable / [1] Enable

121 WV Float Window creator: window height Any -

16

I. Config file [uos.cfg]

Position name Values [DEC]
Default value

[DEC]
Variable Adress [DEC/$]

1 TRIANGULAR μOS version 136 136 VR 3050 / $0BEA

2 Work drive # 8 - 11 8 WD 3001 / $0BB9

3 Datasette availability 0 / 1 1 DD 3060 / $0BF4

4 Desktop background reverse 0 / 1 0 BR 3067 / $0BFB

5 Desktop background pattern Any 223 BP 3068 / $0BFC

6 Desktop pattern color Any 129 BC 3065 / $0BF9

7 Title bar color Any 153 TC 3066 / $0BFA

8 Printer device # 0 or 4-7 0 PP 3061 / $0BF5

17

J. Support & Legal note

More information about TRIANGULAR μOS for Commodore 128 and other computer systems is
available on TRIANGULAR μOS website, where you can download SDK, report bug or get help:
triangular-uos.blogspot.com

LEGAL NOTE:

TRIANGULAR μOS is free and open software which you can freely copy, share and edit,
but don’t forgive to give credit to its developers (especially 3rd party game creator).

https://triangular-uos.blogspot.com/p/triangular-os-for-commodore-128.html

18

K. Changelog

TRIANGULAR μOS 1.36 for Commodore 128 [04-12-2023]:

- SYSTEM DISK folder added for use with SD2IEC
- GUI: Fixed bug preventing moving windows up and left
- SETTINGS: Fixed labels dislocation when window is moved
- When windows are moved time is now updating
- MATH: Fixed bug in memory operations
- MATH: Fixed bug in reading clipboard values mechanism
- WORDS saves its text files in .txt format instead of .doc
- GAMES folder rearranged: STAR WARS beside SIMCITY, swapped positions

with TREASURE
- STAR WARS: Sound effects added to its game engine
- Corrections of minor visual discrepancies
- Improvements and bugfixes
- Updated documentation

19

TRIANGULAR μOS 1.35 for Commodore 128 [23-06-2023]:

- BIOS improved and bug fixed
- Movable windows by clicking on title bar
- Mouse pointer change when in moving window mode
- Mouse pointer change to hourglass when waiting
- Desktop icons layout rearrangement
- Start menu orb from sprite
- MATH bug fixed
- GUI cleaned up and improved
- Sprites without flickering
- Updated loader graphic using sprite stripes
- Border COLOR reinforced
- Code refactored
- CMD and MONITOR text area handled by WINDOW command
- CMD info properly display amount of free memory from both memory banks
- MONITOR function calling machine program is much simpler
- Drive detection database is held in DATA statements
- CRAB IN NEW YORK error in which 1 collision with cars or trains takes 2 lives is bug fixed

plus minor improvements
- STAR WARS: X-Wing vs TIE Fighter game added
- DO...WHILE...LOOP...UNTIT...EXIT and BEIN...BEND commands implemented
- FAST and SLOW utilized to speed up drawing PETSCII elements of inter-loading,

also in BIOS and GAMES
- BASICALLY API Window creation function expanded
- BASICALLY API Jump Table added
- Improvements and bugfixes
- SDK adds template windowed program with its source files
- Updated and augmented documentation and SDK documentation now in single PDF file

TRIANGULAR μOS 1.34 for Commodore 128 [28-05-2023]:

- Windows loops changes to relative windows position
- Mouse routine improved and mouse position changed
- More BASIC 7.0 commands added
- SIMCITY bug fixed
- CRAB IN NEW YORK, a 3rd game added
- Bugfixes

20

TRIANGULAR μOS 1.33 for Commodore 128 [17-05-2023]:

- Mouse routine reworked and improved
- BASICALLY API Window creator reworked with window displaying mechanism
- TREASURE CHAMBER, game by Fabrizo Caruso added
- More BASIC 7.0 commands added (IF…THEN…ELSE, SLEEP) and RESTORE command

expanded
- Bugfixes

TRIANGULAR μOS 1.32 for Commodore 128 [11-02-2023]:

- BASIC 7.0 WINDOW command utilized
- Enlarged DESKTOP area
- Change versioning scheme and version held as numeric value in memory
- Change file system from filename>ext (-ension) to filename.ext (-ension)

e.g.: uos>cfg to uos.cfg
- BASIC 7.0 sound commands implemented
- Minor improvements and bugfixes

TRIANGULAR μOS 1.31/C128 for Commodore 128 [15-01-2023]:

- Mouse pointer routines redesigned which resulted in twice faster movements
- Some additional graphic operations converted to BASIC 7.0 syntax
- Minor improvements and bugfixes

TRIANGULAR μOS 1.30/C128 for Commodore 128 [12-01-2023]:

- Commodore 128 in its standard 40 column VIC-II C128 mode is supported
- Only 3.5” 1581 type disk drive is supported
- Loading and saving is 10x faster due to faster C128 1581 disk drive handling
- Color theme changed from C64 blue to C128 pyramids
- BASIC 7.0 handles sprites and few needed instructions added
- GAMES folder contains only SIMCITY, other 3 games removed
- Minor improvements and bugfixes
- Changelog is revised and integrated back into User’s Manual

